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Braid Group Symmetries 

Suemi Rodriguez-Romo ~ 

Received May 7, 1991 

Some invariance transformations of the braid group are used to construct crystal- 
lographic and lattice representations. A set of related properties are analyzed. 

1. INTRODUCTION 

In pure mathematics, the theory of braids has been used as a tool to 
investigate the theory of knots. In addition, this is well known that in quan- 
tum theory in two and three space-time dimensions the statistics of particles 
and fields are not in general described by representations of the permutation 
group. It was recognized only recently that the new field statistics encoun- 
tered in two-dimensional models with quantum kinks may lead to represen- 
tations of the braid groups (Fr6hlich, 1976; Bellisard et al., 1978). 

In three-dimensional local quantum theory, which is of considerable 
interest in condensed matter physics, it is a rather old observation that 
particle statistics is described by representations of the braid groups (Schul- 
man, 1971 ; Laidlaw and De Witt-Morette, 1971). Braid statistics also appear 
to play an important role in systems exhibiting a fractional quantum Hall 
effect (Fr6hlich, 1989). 

Furthermore, braid and quantum groups follow from a Yang-Baxter 
algebra in the limit of :t:oc for the spectral parameter (de Vega, 1989). 

In this paper we show the crystallographic and lattice groups as a result 
of symmetries of braid groups. Thus, a connection is given between the 
group of statistics in three-dimensional local quantum models and the pure 
space symmetry of physical crystals. 

The paper is organized as follows. Section 2 presents a short review 
about braid groups and some concepts related to this subject. Section 3 

~Facultad de Estudios Superiores Cuautitl~m, Universidad Nacional Aut6noma de M6xico, 
Apdo. 172, Cuautitl/m Izcalli, Edo. de M6xico, 54700 M6xico. 

1403 

0020-7748/91 / I 100-1403506.50/0 ,c, 1991 Plenum Publishing Corporation 



1 4 0 4  R o d r i g u e z - R o m o  

presents a construction of  crystallographic and lattice groups using an analy- 
sis of  the symmetries given by the braid group relations, and studies related 
properties. 

Finally, Section 4 presents our conclusions. 

2. BRAID G ROUPS 

Let us consider a rectangle P and two sets of n points At, A2, . . . ,  A, 
and B1, B2 . . . . .  B, placed at equal distances on a pair of opposite sides (L1 
and L2). Suppose that Ai ~ Bi is a one-to-one correspondence between these 
sets of  points. P is assumed to be placed in the space R 3. 

We take simple broken lines li in R 3 connecting A~ and Bk, such that li, 
/j are disjoint for i#j ,  the projection l; of l; on the plane of  P lies inside P, 
and any straight line parallel to L~ and L2 and lying between them intersects 
l~ at a single point for each i. Finally, we assume that ~ and/~ for i # j  intersect 
at finite points and that they are all in different levels. Such a configuration 
is called a braid of  nth order. An example of  a braid of nth order is given 
in Figure 1. 

Each topologically equivalent class of braids is identified with an ele- 
ment of the group. 

When the lines l~, lj have no intersections, the braid is called trivial. A 
general n-braid is obtained from the trivial one by applying successively the 
operations bi and/or  the inverses bT' (1 _< i<  n -  1). The operations bg and 
b71 are depicted in Figure 2; for simplicity we avoid the frame P in this 
description. 
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Fig. 2. The elementary operations bl and b, --1 from the n-braid group. 

The operations bi and b71 are the n-braid group generators and they 
obey the relations 

bibs+ lbl = bi+ lbibi+ 1 
(2.1) 

b~bj=b;bi if l i - j l  >2 

It is well known that quantum and braid groups follow from Yang- 
Baxter algebras (de Vega, 1989). 

Consider the nonsingular matrix R(O)= ca [Rab(0)] as a Yang-Baxter 
bundle with spectral parameter 0; therefore it satisfies the equation 

cd b I e b2b 3 Ra2a, (81 - 02)Ro3c(0 t --83)Red (82- -  83) 

= R % % ( 0 2 -  pb3 ~,~2 83)Rnm(81 - 83)Rmp (01 - 02) (2.2) 

Moreover, if we only assume that 

lim |177 o~R( O) = R• (2.3) 

exists and is nonzero, these R• matrices can be represented graphically as 
in Figure 2. This means that we have 

D i , i +  1"~ 1,i,i+ 11 + =bi and ~..lx i,i+[Di'i+l~jj_ =b; -1 (2.4) 

In addition, it is easy to prove that 

R+R_ = R _ R +  or bTlbi=bib/-1= 1 (2.5) 
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3. CRYSTALLOGRAPHIC AND LATTICE REPRESENTATIONS 

Let us consider an X element of an n-dimensional Euclidean space R ~, 

X = X i e i ,  i=  1, . . . ,  n (3.1) 

where we have used (ei) as a basis set of R n and the Einstein convention for 
the indices. 

We can link the components of the vector (3.1) to the two sets of n 
points that define an n-braid in such a way that Xi corresponds simultane- 
ously to A / a n d  Bi (see Figure 1). Thus, it is clear that we have a direct 
realization of the braid group generators 

b i X = b i - l X = X l e l  + .  �9 �9 + X ~ + l e i + X i e i + l  + .  �9 �9 +Xnen  (3.2) 

This is because (3.2) satisfies (2.1). This means that we have 

b i b j X = b j b ~ X  if [ i - j [  > 2  
(3.3) 

bibi+ lb iX  = bi+ lbibi+ 1 X 

with the additional condition 

b i X = b 7 1 X  or bzX = 1 (3.4) 

We remark that (3.4) is a restriction given for the realization (3.2), but 
it is not needed to define the braid group. Only in the particular case R+ = 
R_ is this assumption justified; it is a usual mistake in the literature to 
consider the relations (2.1) and (3.4) as fundamental ones to define the n- 
braid group algebra (Bacry, 1989). 

The braid realization (3.2) is not the only one. It is possible to get a 
family of braid realizations with or without the additional restriction given 
by (3.4). We can consider all of these possibilities as symmetry operations 
that keep invariant the braid relations (2.1). 

Let us consider the operator 

b ~ X = Y ~ e l + . . . + ( c t X ~ + ~ + / 3 ) e i + ( 7 1 X i + ~ 5 ) e ~ + ~ +  . .  . + Y " e ,  (3.5) 

with the corresponding inverse 

b T t X = Y ' e ,  + .  �9 �9 + ( X  i + ~ -  g ) / T e ~ + ( X ~ - f l ) / a e t + ,  +" �9 �9 + Y " e n  (3.6) 

We can prove that (3.5) and (3.6) satisfy the braid group relations 
(2.1) if and only if 

9 " ~ + 5 = a 5 + ~  (3.7) 

is true. 
Before we proceed, it is clear that (3.5) and (3.6) (for any values of a, 

/3, 7/, and • ) generate n linearly independent translations (being a subgroup 
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of the group of motion in an n-dimensional Euclidean space Rn), which 
means that they are a representation of the n-dimensional crystallographic 
group. For  the particular case given by fl = 3 = 0 we have a subgroup of  the 
crystallographic group called the lattice group. 

The case fl = 0 has been analyzed in the literature (Bacry, 1989) and 
defines either 3 = 1 or 6 as an ideal of  a. 

To analyze the internal symmetries of the Yang-Baxter algebras associ- 
ated to the braid group realization (3.5) and (3.6) we need a matrix represen- 
tation for bi and b71 , 

bi = ~ E~,a+flX?lEu+3XT+~,Ei+l,i+l+aEi,~+,+TE~+,.~ (3.8) 
a ~ i  
a # i + l  

bT~= E Ea,a-3(YX,)-'E,,,-fl(ctX,+l)-lE~+,,g+, 
a # i  
ctv~i+l 

+ a - 1Ei, i+ 1 + 7 -  lEi, i+ l (3.9) 

where E~,a = 3~3jp, Xi= aX~+~, and we have only two possibilities, either 
/3=0 or f i=0.  

Let us consider the group of matrices ff with the property 

[g| R(0)] =0,  V g ~  (3.10) 

The connection between the 0 dependence of R(O) and the symmetry group 
~q is well known (de Vega, 1989). 

From (3.10) in the limit 0 ~ • ~ ,  we can deduce 

g@gbi = big@g 

g| ~ = b7 ~ g| (3.11) 

In our case, for/3 = 0 and the matrix representation given by (3.8) and (3.9), 
we obtain 7[g| 1 = ct[g| ~,~ as the only condition over the internal 
symmetry group f#. Therefore, it is clear the connection between ~ and the 
form given to the crystallographic group in (3.5) and (3.6). 

4. CONCLUSIONS 

In this paper we have shown the general way to obtain the crystallo- 
graphic (and lattice) transformations as a family of symmetries of the rela- 
tions defining a braid group. Furthermore, we present the connection 
between the internal symmetry of the Yang-Baxter equation which gener- 
ates, in the • ~ limit, the braid group and the explicit form for the crystallo- 
graphic (and lattice) transformation. 
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